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Available Hartree-Fock functions have been used to evaluate the magnetic hyperfine
structure constants for various neutral atoms and positive and negative ions with configura-
tions involving equivalent p- and d-electrons. The necessary formulation is presented; in
particular, the J-dependence of the hyperfine structure constant is tabulated for the mentioned
configurations.

Mittels vorhandener Hartree-Fock-Funktionen werden die magnetischen Hyperfein-
strukturkonstanten fiir neutrale Atome sowie positive und negative Ionen mit Konfigurationen
von dquivalenten p- und d-Elektronen berechnet; der dazu notwendige Formelapparat wird
zusammengestellt. Die fiir die erwihnten Konfigurationen berechneten Werte und ihre J-
Abhingigkeit werden in Tabellenform angegeben.

On a employé des fonctions de Hartree-Fock pour le calcul des constantes de structure
hyperfine magnétique pour quelques atomes neutres et ions positifs et négatifs, qui possédent
des configurations électroniques avec des électrons p ou d équivalents. Les formules nécessaires
sont présentées. On donne la dépendance de J de la constante de structure hyperfine.

Introdnetion

In previous papers of this series [65—38] the values of various physical properties
(nuclear magnetic shielding constants, diamagnetic susceptibilities, field gradients
and quadrupole coupling constants, and Fermi contact interaction terms) for
many-electron atoms, evaluated from analytical Hartree-Fock (HF) functions,
have been reported. In this paper the magnetic hyperfine structure (hfs) constants,
also evaluated from analytical Hartree-Fock functions, are presented for a large
number of atomic systems.

Magnetic Hyperfine Structure
The magnetic hyperfine structure** arises from the interaction of the nuclear
magnetic moment g¢; with the magnetic field produced at the nuecleus by an elec-
tron of spin angular momentum s and orbital angular momentum Z.
* This work has been supported in part by the National Research Council of Canada.

** Only the magnetic dipole interaction, following the general treatment of Trrms [13], will
be considered in this paper.
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The so-called dipole-dipole hyperfine structure Hamiltonian operator is
defined by

Hy = QuppnpilI) 3, (Ni-Ijr}) (1)

1

where y g is the Bohr magneton, py is the nuclear magneton, and uy is the nuclear
magnetic moment, measured in units of nuclear magnetons. Nj is defined by

Ni= L~ si+ 3(ri*si) (rifr]) , (2)
r; being the position vector for the i-th electron, and I; and s; being the corres-
ponding orbital and spin angular momentum vector operators. Similarly, I
denotes the nuclear spin angular momentum vector operator, I being the corres-
ponding quantum number.

The interaction represented by Eq. (1) is the scalar product of two vectors, and
therefore the matrix elements of Hg can be evaluated using the tensor algebra of
Raoan [10, 11]. These matrix elements, independent of the total angular momen-
tum projection quantum number* Mp can be represented by

(o, I, F | Hg | &J, I, F) = 2upun(ui|I) (o, I, F | 3 (N;-2Jr}) |, I, F),  (3)
3
where « is an additional quantum number required to complete the description of

the state under consideration. But according to the Wigner-Eckart theorem
[14, 2], the matrix elements of > (N;-Ifrf) for any of the (2J + 1) substates corres-
3

ponding to a given level are proportional to those of J-I and therefore one can
write

(o« LF | 2 (N;-I)23) | o LF) = A'(J) (o [LF | J-0 | ], LE) =2, (4)

leading, according to Racan [10], to

(W, LF | Hy | o L) = 2upun(ual 1) A') (E[2) <9, (5)
A’(J) being the constant of proportionality and K being defined by
K=FF+1)— HI4+1)-J(J+1). ()
Eq. (8) can be rewritten also as
(xJ,LF | Hy | &, I,F) = A(J) (K[2), (7a)
where A(J) and A’(J) are related by the expression
AW) = sl D) (%) A1) . (Th)

For an atom showing L -~ § coupling Gounsmrr [3] has given** for 4’(J) the expres-
sion
AN =22 —¢) —o6'(2~-g) —2g— 1) LIL+ DJRL—-1)@2L+3) ()
(for L 0, J = 0), with (as proved by Trugs [13])

* The total angular momentum projection quantum number Mr has values ~F < Mr< F,
where F is the total angular momentum quantum number of the atom, defined by the possible
values

F=(J+D,J+I-1),..,|J~-1],
where J is the total electronic angular momentum quantum number and I is the nuclear spin
angular momentum quantum number.

** Thig expression has also been derived by Trrrs [13].
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A=[LL+1) QL+ OI"h (@S L|| 5 L||«S L), (9a)
o= — [2L— 1) QL + 3)Th [S(S + 1) (28 + 1) L(L + 1) (2L + 1)~
(@S L|| 3 s-CP || 28 L), (9b)
I'=12) [J(J + 1) — L+ 1) — 8(S + 1)], (9¢)
g=14[JJ + 1)+ 88 + 1) — LI + 1])@J + 1), (9d)

where the double barred matrices are given by Racanm [10, 11]; C® is a tensor
operator*. Huses, MARRUS, NIERENBERG, and WORCESTER [£] have also derived
an expression for 4'(J) for the groundstate (J = L 4 8) of a configuration of #
equivalent electrons (or of » missing electrons)

ATy = {[JJ + 1) + L(L + 1) — 8(S + 1)]2J(J + 1)} +
+ 2[(2L — nA)n*2L — 1) 21 — 1) 20+ 3)]{LIL + 1) (g — 1) —

- (32) IJ(J + 1)+ L(L+ 1) — S8 + DJ12JJ + 1)1}, (10)
where [ is the angular momentum quan-
tum number for the shell under considera- Table 1. Values of A'(J) for
tion, and I"and g are given by Egs. (9¢c) various alomic configurations®
and (9d), respectively. Configuration State  A’(J)
Values of A'(J), calculated independ-
ently from Egs. (8) and (10), were found o, P 2p 8/15
to be identical. These values are collected 2, pt 3p 3/5
in Tab. 1 for various configurations of dt, d® D 24/35
) M &, a8 ¥ 57
equivalent p- and d-electrons. B & g 44/63
It is common to define also the da, ds sD 4T

so-called hyperfine structure constant ag, T Ta this bable th .
corresponding to the magnetic dipole are presentefl for tehe GZSZ"’S‘I s
interactions considered in this section. J=1IL4+8.

This constant is given by

aq = 2usun(ui/1) A'(J) {r-%),
and can therefore be calculated if the expectation value {#—3) is known.

Results and Discussion

The expectation values {r—3) were calculated from the analytical Hartree-Fock
functions of CLEmENTI [/] and Matr1 [9]. The corresponding values of a4, for a
number of neutral atoms, positive ions, and negative ions are presented in Tab. 2
and 3, which include also experimental values wherever available**,

Comparison of the theoretical and experimental values of the magnetic dipole
hyperfine structure constants agq for atomic systems with p® configurations shows
an excellent agreement. In general the theoretical values agree with the experi-
mental values within 59%,; the only exceptions are Al% and CI%, for which the
discrepancy is 15% and 79%,, respectively.

* For more details see the original work of TreEs [13].
** The experimental values of aq, as well as the values of the nuclear magnetic moments
1, have been taken from Ramsuy [12].
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Table 2. Magnetic hyperfine structure constants as for some states® of various neutral atoms and
negative and positive ions with configurations p»

(in Mo/sec)
Z M Positive Tons Neutral Atoms Negative Ions
State aa State aa State Qg
5 10 :p 23.7 3P 16.0
11 2p 70.8 3p 47.9
6 13 2p 158.9 3p 136.2
7 14 3p 88.7 p 54.8
15 3P - 124.3 3p - 76.8
8 17 3p - 215.9 :p ~156.5
9 18 3P 406.2 2p 307.6
19 p 2669.5 2p 2021.14
10 21 2p - 21241
13 26 2p 31.0 3p 214
27 2p 80.6 3p 55.6
14 29 2p - 1501 3p - 130.6
15 30 3P 139.2 3p 89.4
3 ip 525.0 3p 337.1
16 33 3p 118.9 2p 88.0
35 3p 186.6 2p 136.8
17 34 3p 209.4 2p 160.8
35 3p 244.8 2p 188.8
36 3p 287.1 2p 221.5
37 3p 203.8 2p 157.2
31 67 2P 180.7 3p 1221
69 :p 198.0 3p 133.8
i 2p 251.5 3p 170.0
32 71 2p 339.4 3p 300.2
73 2p - 80.7 3p - B3.7
33 75 5p 461.4 3p 300.4
M 7 p 567.7 ep 420.9
79 ip 154.6 2p 114.6
35 79 3p 1104.6 2p 856.6
81 3p 1190.7 2p 923.3

a The calculated values have been obtained using the Hartree-Fock functions of CLEMENTT
[1] and Marrz [9]. The experimental values of aq for BINZ = 5), Al2/(Z = 13), CI35(Z = 17),
CBYZ = 17), Gaf(Z = 31), Ga™Z = 31), Br"*(Z = 35) and Br®(Z = 35), as given by RAMSEY
[12], are 73.347, 94.25, 205.050, 170.681, 190.794, 242.434, 884.810, and 953.770 Mo/sec,
respectively.

One must conclude that, in general, Hartree-Fock functions are adequate for
the evaluation of magnetic dipole hyperfine structure constants. The discrepancy
mentioned above must be due, most probably, to an error in the experimental
values, either of a4 or of the corresponding nuclear moment, and. this suggestion is
based on the following argument.

The accuracy of the calculated. value of ag seems to be independent of Z; for
B! the error is 49, and for Br™ and Br®l, the heaviest atoms considered in this
work, the discrepancy with the experimental value is 59,. On the other hand, the
Hartree-Fock functions used seem to be satisfactory, because the calculated value
for the isotope CI33 has only an error of 49,. Therefore the only possibility that
remains is the one mentioned above.
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Table 3. Magnetic hyperfine structure constants aa for some states® of various neutral atoms and
negative and positive tons with configurations dr

(in Mc/seo)
Z M Positive Ions Neutral Atoms Negative Ions
State aa State aa State g
271 45 3F 110.3 2D 1271 3F 98.1
22 47 L 3611 3F 43.3 iR 34.0
49 AF 361.2 5F 43.4 1y 34.0
23 50 5D 70.0 4F 98.4 5D 67.7
51 5D 1844 4F 259.5 5D 178.6
24 53 5D 57.8
25 55 5D 278.5 5D 273.6
26 57 sF 10.0 5D 91 4F 9.8
27 57 3K 4894 4R 525.3 3F 484.5
58 3F 644.6 4F 691.9 3F 638.1
59 37 489.2 LF 525.1 3F 484.3
60 3F 257.8 iR 276.7 3F 255.3

28 61 5F 31.8

» Values calculated using the Hartree-Fock functions of CLemENTI [1].

One feels, therefore, confident that the values reported for ag for atomic
systems with d® configurations should present similar accuracy.
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